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Advances in nanotechnology opened up new horizons in the field of cancer research. Nanoparticles made of various
organic and inorganic materials and with different optical, magnetic and physical characteristics have the potential to
revolutionize the way we diagnose, treat and follow-up cancers. Importantly, designs that might allow tumor-specific
targeting and lesser side effects may be produced. Nanoparticles may be tailored to carry conventional chemotherapeutics
or new generation organic drugs. Currently, most of the drugs that are commonly used, are small chemical molecules
targeting disease-related enzymes. Recent progress in RNA interference technologies showed that, even proteins that
are considered to be “undruggable” by small chemical molecules, might be targeted by small RNAs for the purpose of
curing diseases, including cancer. In fact, small RNAs such as siRNAs, shRNAs and miRNAs can drastically change
cellular levels of almost any given disease-associated protein or protein group, resulting in a therapeutic effect. Gene
therapy attempts were failing mainly due to delivery viral vector-related side effects. Biocompatible, non-toxic and efficient
nanoparticle carriers raise new hopes for the gene therapy of cancer. In this review article, we discuss new advances in
nucleic acid and especially RNA carrier nanoparticles, and summarize recent progress about their use in cancer therapy.
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In spite of the advances in medical sciences and technolo-
gies, cancer is still one of the leading causes of mortality
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and morbidity in developed and developing countries.!
Classical treatment modalities, namely chemotherapy,
radiotherapy and surgery, have been used from the begin-
ning of 20th century with limited treatment success rates,
especially for advanced stage disease. In the last decades,

chemotherapy and radiotherapy approaches evolved to
minimize toxicity, invasiveness and side effects while pre-
serving effectiveness. Yet, the basic action mode of both
chemotherapy and radiotherapy is perturbation of the divi-
sion and induction of the death of all rapidly proliferating
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cells in a non-selective way. Consequently, both of these
approaches are accompanied with side effects ranging from
hair loss and gastrointestinal (GI) problems (hair follicles
and GI tract cells are amongst most rapidly proliferating
cells in the body) to secondary cancer development (e.g.,
Leukemias) due to DNA damage. Therefore, development
of targeted and cancer cell-selective therapies with minimal
short- and long-term side effects is an important challenge.

Recent progress in molecular biology, genetics and
biotechnology allowed the development of small molecule
drugs targeting cancer-related proteins, antibody-based
drugs, immunomodulatory approaches and cellular ther-
apies ranging from improved bone marrow transplan-
tation to stem cell treatments. Some of these novel
approaches already entered clinical use, alone or as part
of an adjuvant or combinatory therapy with classical treat-
ment modalities.> Parallel advances in diagnostic tech-
niques, cancer genetics and pathology led to a better and
more detailed classification of cancer subtypes, allowing
subtype-specific, even personalized treatment regimens.>
In spite of all these innovations and efforts in the can-
cer medicine field, disease-free survival rates are low
and prognosis is still bad, especially in advanced and/or
metastatic cases. Therefore, a better understanding of
cancer biology and development of novel and innovative
treatment approaches is still one of the most important
challenges of modern science and medicine.

A great majority of small molecule drugs target disease-
related enzymes or receptors.* Yet, we now understand
that complex processes and changes during cancer initia-
tion, progression and evolution leading to drug resistance,
result in the mutation and/or dysregulation of enzyme
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and non-enzyme proteins and even nucleic acids such as
microRNAs and long non-coding RNAs.> In the post-
genomic era, with the advances in genomics and epigenet-
ics of cancer, gene therapy is one of the innovative cancer
therapy fields gaining momentum in recent years. Gene
therapy approaches offer the possibility of up or downreg-
ulation of dysregulated gene products and replacement of
modified/mutated transcripts with non-mutated/wild type
forms.® Experimental treatments using nucleic acids range
from DNA/cDNA replacement therapies to RNA-based
regimens. Although establishment of general concepts of
gene therapy date back to 1960s and 1970s, issues related
to the stability and half-life of the nucleic acid molecules,
and most importantly lack of suitable delivery and target-
ing systems limited the success of this promising technol-
ogy. Until recently, viral systems were the major focus of
gene delivery studies and gene therapy protocols. Modi-
fied viruses, including adenoviruses, retroviruses, herpes
viruses and lentiviruses were examined and tested in detail
as gene delivery agents. In addition to severe immune
reactions ranging from inflammation to shock, insertional
mutagenesis caused by viral integration into the patient
genome constituted major side-effects and drawbacks, rais-
ing concerns and doubts about the future of gene therapy.’
With recent advances in nanotechnology, several non-viral
gene delivery systems were developed as gene and drug
carriers, reviving hopes about the use of nucleic acids as
potent drugs against cancer.

SCOPE OF THE REVIEW

In this review, we will summarize and discuss accumu-
lating data about the use of nanoparticles as nucleic acid
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carriers. We will limit ourselves to cancer gene ther-
apy studies exploiting nanocarrier loaded small RNA/DNA
molecules, i.e., RNA interference (RNAi) tools such as
siRNAs, shRNAs and microRNAs. Merits and contribu-
tions of antisense oligonucleotides in gene therapy experi-
ence were discussed in detail elsewhere.’

RNA INTERFERENCE
Discovery of RNA interference (RNAi) by Andrew Fire
and Craig Mello was a breakthrough, that was awarded by
the Nobel prize in Physiology or Medicine in 2006. Small
RNAs mediating RNA interference control gene expres-
sion in organisms ranging from plants and C. elegans
to human. Small interfering RNAs (siRNAs), short hair-
pin RNAs (shRNAs) and microRNAs (miRNAs) are the
most studied members of regulatory RNAs.® Non-coding
small RNAs are not translated; they mainly act at a post-
transcriptional level, determining the stability of messen-
ger RNAs (mRNAs) and their translation into proteins.
Endogenous siRNAs (endo-siRNAs) are coded not only
by transposons and other repeat elements, but they may
also originate from regions where both sense and antisense
transcripts are transcribed, as well as from sequences giv-
ing rise to potential hairpin structures inside pseudogenes

Scheme 1.

and even in protein-coding genes.'”!' On the other hand,
miRNAs may be intronic or intergenic. Intronic miRNAs
are transcribed from intron regions of some protein coding
mRNAs, while intergenic miRNAs are transcribed from
miRNA genes or gene clusters using their own promoters.

Endogenous siRNAs and miRNAs bear similarities to
each other from a structural and functional point of view.
Yet, pathways leading to their maturation are rather spe-
cific to the small RNA type (Scheme 1(a)). miRNAs are
transcribed by RNA polymerase II as primary-miRNAs
(pri-miRNAs), and processed by a Drosha-DGCR8 com-
plex in the nucleus to produce hairpin-shaped premature-
miRNAs (pre-miRNA).!?> Transport from nucleus is
achieved with the help of the exportin-Ran GTPase com-
plexes. Further processing of the pre-miRNA hairpin by
cytoplasmic DICER proteins produces ~21-22 nt long
miRNA/miRNA* duplexes. One of the mature miRNA
strands that originate from the duplex is then loaded onto
a complex called the RNA-induced silencing complex
(RISC), including the Argonaute (e.g., AGO2) proteins.
RISC then guides the mature miRNA strand towards tar-
get messenger RNAs (mRNAs). It is believed that tar-
get specificity of the miRNA and the fate of the target
messenger RNA depends on the degree of complemen-
tarity between matching sequences of these two types of

RNA interference (RNAi) pathways. (a) miRNA pathways. (b) siRNA pathways. See text for the pathway details. RNA

Pol II, RNA polymerase IlI, Dicer, Dicer enzyme complex into the siRNA. RISC, RNA-induced silencing complex (RISC), RdRP,
RNA-dependent RNA polymerase, ORF, open reading frame of the target gene, AAAAA, polyA tail of the mRNA.
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RNAs. While a partial complementarity may lead to the
blockage of the translation machinery, protein translation
repression, and/or sequestration of miRNA-mRNA com-
plexes in compartments called P-bodies, a perfect match
between these two RNAs may result in mRNA degradation
(Scheme 1(a)).

Conversely, endo-siRNAs complementary to template
mRNAs are synthesized by RNA-dependent RNA poly-
merases (RARP), and they are not transcribed from the
genomic DNA (Scheme 1(b)). It was long believed that
mammals did not have any RdRPs. But this concept
is now changing. For example, human telomerase cat-
alytic subunit (hTERT) was shown possess a mammalian
RdRP activity required for double stranded RNA synthe-
sis from the mitochondrial RNA processing endoribonu-
clease noncoding RNA component.'*'* In the endogenous
siRNA pathway, hairpin containing double-stranded RNA
products of RARP are further processed into functional
endogenous siRNAs in either a Dicer-dependent or a
Dicer-independent manner (Scheme 1(b)). In general, the
sense guide strand of the endo-siRNAs are loaded onto the
RISC with AGO2 proteins.

While in general, mammalian miRNAs show partial
complementary to their mRNA target sequences and con-
trol a wide number of functionally-related transcripts, strict
complementarity was thought to be necessary for siRNA
function.’ But, even synthetic siRNAs or shRNAs that are
designed to target one and only mRNA were shown to
affect so called “off-target genes.” Therefore, although a
gene with a dominant biological effect will be targeted by
siRNA/shRNAs, a spectrum of biological events might be
affected by the use of a small RNA. Nevertheless, in vitro
cell culture and animal studies confirmed that, the biolog-
ical outcomes of siRNA/shRNAs and even miRNAs were
usually determined by their effect on a dominant target
gene and/or pathway.'> 6

SMALL RNAS AS POTENT DRUGS

Use of potent RNA interference strategies might give us
new opportunities for the treatment of diseases such as
cancer.!” Potential advantages of small RNAs over existing
small molecule drugs and conventional therapies include,
organic composition, natural metabolism, lower drug tox-
icity, minimal immune reactions when designed optimally
and combined with appropriate carriers, possibility of
modulating targets that are considered as “undruggable” by
conventional drugs, possibility of targeting disease-related
tissue-specific isoforms and/or mutant transcripts and stan-
dard chemical synthesis protocols. Moreover, RNA plat-
forms are now widely used in high throughput formats for
target validation and drug development processes, reduc-
ing the product development cycle and cost compared to
conventional small molecules.!'®

Modifications to the native RNA structure can cre-
ate robust drug-like RNA molecules.! Synthetic 21-mer

J. Biomed. Nanotechnol. 10, 1751-1783, 2014

RNA duplexes mimicking natural siRNAs and miRNAs
are commonly used in RNA-based gene therapy protocols.
Alternatively, asymmetric 25/27-mers or 27/29-mers, blunt
25-mers, blunt 27-mers and blunt 19-mers were tested for
their stability and potency as RNA drugs with variable
merits.?>?3 These different synthetic RNAs might directly
be loaded onto the RISC complex or they might first
require processing by Dicer. In fact even under in vitro con-
ditions, synthetic siRNAs were shown to directly load onto
recombinant human AGO?2 proteins and form functional
complexes.?* Therefore following delivery, small RNAs
may rapidly form functional complexes and alter target pro-
tein levels, resulting in therapeutic changes in cells.

Naked RNA molecules are highly susceptible to degra-
dation by nucleases that are abundant in tissues and in the
blood circulation. Therefore, to stabilize RNA molecules,
increase their half-lives in biological environments and
avoid immune reactions, a number of chemical changes
might be introduced to the nucleic acid structures.'”
There are several commonly used RNA modifications:
2'-O-methyl modifications into the sugar structure of
some nucleotides may confer resistance to endonucle-
ases, decrease off-target effects when introduced into the
seed region, and minimize Toll-like receptor-mediated
immune reactions.”>’ Introduction of phosphorothioate,
boranophosphate or methylphosphonate backbone linkages
at the 3’-end of the RNA strands may reduce their suscepti-
bility to exonucleases. Similarly, alternative 2" sugar mod-
ifications such as 2'-fluoro, LNA (Locked nucleic acids),
FANA (2'-deoxy-2'-Fluoro-f-d-arabinonucleic acid), and
2'MOE (2'-0O-methoxyethyl) modifications were reported
to increase endonuclease resistance of small RNAs.?
While all these modifications result in more robust RNA
molecules, they might affect the potency of the RNA inter-
ference effects obtained during treatment. Therefore, even
if the changes were performed according to design criteria
or computer tools, experimental testing is required in each
separate case to confirm potency of modified small RNA
molecules on their mRNA targets.? 3

RNA/DNA NANOCARRIERS FOR
CANCER THERAPY

Use of gene therapy and lately small RNAs for can-
cer treatment was hindered by the lack of a suitable
delivery system. Recent developments in nanotechnology
allowed the introduction of nanoparticles with very differ-
ent physico-chemical properties. Novel and sophisticated
nanocarriers and their functionalized derivatives are being
tested as potent and in many cases targeted RNA drug
delivery agents. Some formulations are already in clinical
trials and a few of them were even approved by major
agencies such as the Food and Drug Agency (FDA) in the
USA3!

Nanoparticles to be used as nucleic acid delivery agents
should meet several criteria. The particles should safely
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and effectively deliver RNA molecules to cancer cells and
tumors. Therefore, they have to be biocompatible, not
immunogenic and they should not get modified or dis-
solved into toxic substances under biological conditions
and before reaching the tumor target. For effective deliv-
ery and dosage, nano conjugates have to be stable enough
in the blood circulation and resist shear forces, proteases
and nucleases that they face with. Complex formation with
blood cells, proteins and other blood components might
also affect carrier size, charge, availability and efficacy.

Clearance is also an important issue. For nanocarriers
to reach therapeutic blood levels, they should not be read-
ily cleared through glomerular filtration in the kidneys or
trapped by the reticuloendothelial system. For example,
naked siRNA molecules and nanoparticles less than 10 nm
may be filtrered and excreted through kidneys follow-
ing systemic administration. Carriers larger than 100 nm,
might be phagocytosed and cleared by monocytes and
macrophages residing in the reticuloendothelial system
(RES, also called mononuclear phagocytic system) tissues
with high blood supply, including pulmonary alveoli, liver
sinusoids, skin, spleen etc.*?*¢ In addition to the size of the
nanoparticles, their geometries, surface charges, hydropho-
bicities and opsonization by serum proteins might affect
clearance by monocytes and macrophages. Additionally,
the efficacy of nucleic acid drugs in specific tissues and
organs may depend on the ability of nanocarriers to pene-
trate blood vessels and tissues, and pass through biological
barriers such as the tight blood-brain-barrier of the central
nervous system.

For cancer treatment, small RNA drugs should affect
genetic and/or molecular changes specific to cancer cells
and that are rate-limiting for tumor growth. The ideal
nanocarrier should be able to concentrate within the tumor
tissue, and if possible, target individual tumor cells in a
selective way (e.g., through receptors or molecules that
are tumor-specific or that are enriched in the tumor tis-
sue) and not penetrate normal cells. Enhanced permeability
and retention (EPR) effect offers an advantage for solid-
tumor targeting. The EPR effect is a result of neovascu-
larisation, new blood vessel formation to feed tumors with
sizes beyond passive oxygen and nutrient diffusion lim-
its (beyond 0.1-0.2 mm diameter).’” Blood vessels feed-
ing tumor tissues are irregular and highly permeable. With
the lack of lymphatic drainage, macromolecules are eas-
ily retained in and around the tumor area.*® 3’ For exam-
ple, low molecular weight drugs may diffuse freely in
and out of the tumor tissues, but macromolecules (> 40
kDa) and nanoparticles of 100-200 nm accumulate in
the tumor tissue.’® 4“3 EPR phenomenon was reported in
various human solid tumors as well as in inflammatory
tissues.*

Different types of nanoparticles were tested as drug car-
riers and gene therapy tools (Scheme 2). The core structure
of the particle may be a vesicle (liposomes), a polymer
(e.g., PEL, PLGA), a dendrimer, carbon nanotubes, silica or
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metal nanoparticles (e.g., Gold). Porous/vesiculate carriers
such as liposomes, polymeric micelles or some inorganic
particles (e.g., mesoporous silica) may encapsulate or
absorb RNA/DNA molecules. Nanocarriers with a cationic
nature, including cationic liposomes, cationic dendrimers
(e.g., PAMAM) and polymers (e.g., PEl, PDMAEMA) or
cationic polymer coated inorganic particles (e.g., PEI cov-
ered iron oxide) may form complexes through electro-
static interactions with the negatively charged backbone
of nucleic acids. The nature and physico-chemical proper-
ties of the nanoparticles may also influence their stability
and half-life in blood criculation, efficacy of their delivery
into tissues and cells, and their capacity to escape from
endosomes in the cell. All these properties are determining
criteria for nano drug efficacy.

To improve stability, RNA/DNA loading, target speci-
ficity, tracking, cellular internalization, endo-lysosomal
escape and intracellular robustness, additional functional
units might be introduced to the basic structure of
the nanocarriers (Scheme 3).*> Possible modifications
and changes include conjugation to proteins (antibodies,
lectins, cytokines, thrombin, fibrinogen, BSA, transfer-
rin), cellular or viral peptides (e.g., RGD, LHRD, TAT,
Pep-3, KALA), polysaccharides (e.g., lipopolysaccharides,
hyaluronic acid, dextran, chitosan), low molecular weight
ligands (e.g., folic acid, anisamide), and polyunsaturated
fatty acids (e.g., palmitic acid and phospholipids). These
structures can be conjugated onto the nanocarrier surface
though hydrolysable or non-hydrolysable chemical bonds
and modifications such as amide, ester, silane, hydrazone,
or through the use of high avidity molecules such as
avidin-biotin. Fluorophores may also be added for par-
ticle tracking purposes. To improve the availability of
such groups and especially the targeting groups, spacer
molecules may be added.

An important modification relevant for biological func-
tion is “PEGylation” (Scheme 3).* PEG coordinates
water molecules and forms an aqueous shell around
nanoparticles shielding their charges. PEGylation reduces
interaction with serum proteins, decreases opsoniza-
tion and clearance of nanoparticles by RES monocyte-
macrophages, sterically prevent nanocarrier aggregation,
and due to increased molecular weight above the threshold
for glomerular filtration, reduces elimination of the parti-
cles through urinary excretion. Hence PEG increases the
stability, improves biocompatibility, prolongs blood circu-
lation time and bioavailability of nanocarriers.*®*4’ Molec-
ular weight and density of PEG chains on the nanocarrier
surface may impact the function depending on the nature
of the carried molecules, i.e., siRNA.*’

On the other hand, PEGylation significantly attenu-
ates uptake of nanocarriers by target cells.***° More-
over, PEG chains were shown to block endosomal escape
and cytosolic release of chemical drugs and nucleic
acids.*® Blockage of cellular uptake and endosomal release
in the cell may severely attenuate drug efficacy and
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Scheme 2. Major types of nanoparticles used as nucleic acid carriers.

therapeutic RNA interference effects. Various strategies
were adapted to overcome these negative effects of PEG,
while exploiting its circulatory advantages. Cleavage of
PEG-chains upon delivery into the tumor environment was
achieved through addition of tumor-related matrix met-
alloproteinase sensitive lipids or peptides.’! pH-sensitive
linkers between the PEG moiety and nanocarriers can
also be used to release PEG from the particle in the
acidic environment of the endosomes, and allow cytosolic

release of small RNAs. Modulation of the hydrophobic-
ity of the PEG-nanocarrier conjugate was also tested
as a release strategy. In lipid-based nanocarriers, the
length of the alkyl chain of the PEG-lipid anchor was
shown to determine its affinity for the lipid delivery
vehicle, and changing its length modified endosomal
escape potential and drug effects.> Cholesterol-anchored
PEG was also shown to improve endosomal escape
capacities.>

Scheme 3. A representative nanoparticle with functional modifications. Various molecules might be added to a nanoparticle
to improve its physico-chemical properties and pharmacokinetics (e.g., PEG), to increase RNA/DNA binding (e.g., PEI), to allow

better targeting (e.g., antibodies) or tracking (e.g., fluorophores).

J. Biomed. Nanotechnol. 10, 1751-1783, 2014
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Liposomes

Liposomes have been tested extensively as gene deliv-
ery agents. Liposomes are artificial membrane-bound
vesicles formed by bilayers of amphipathic lipids. They
might be unilamellar or multilamellar. Their biocom-
patibility, low toxicity and low immunogenicity made
them popular agents for both in vitro and in vivo gene
delivery.’»>* Liposomes are typically made of mix-
tures of lipids found in biological membranes or their
derivatives, including phosphatidylcholine (PC or DOPC,
1,2-Oleoyl-sn-Glycero-3-phosphatidylcholine), phosphatidyl-
ethanolamine (PE or DOPE, 1,2-Dioleoyl-sn-Glycero-
3-phosphatidylethanolamine),  cholesterol and even
ceramide.> Although liposomes made of neutral lipids are
more biocompatible than cationic lipids and have better
pharmacokinetics, during preparation of gene delivery
vectors, they bind less to negatively charged DNA or
RNA molecules, and have lower entrapment efficiencies.”
Therefore, despite their more toxic nature, cationic lipids
are commonly used as liposome-based transfection agents.
Cationic lipids posses positively charged headgroups
such as amines, quaternary ammonium salts, peptides,
aminoacids or guanidiniums, which electrostaticly attract
and bind to negatively charged phosphate residues in
nucleic acid backbones. The nature of cationic lipid head-
groups determines the efficacy of gene delivery. Therefore,
various mixtures of lipids with different headgroups
and properties were tested to achieve optimal liposome
formulations for drug and/or gene delivery.>¢>

Although liposomes are excellent transfection agents
in vitro, some side effects and problems were encoun-
tered during in vivo studies.’*>° These include, intracellu-
lar instability and failure to release small RNA contents,
dose-dependent toxicity and pulmonary inflammation that
correlated with the production of reactive oxygen species
(ROS), opsonization by serum proteins, immunogenic-
ity and uptake by the RES components.®*% Addition-
ally, cationic liposome-dependent gene expression changes
were observed during in vitro experiments with some
formulations.*

In order to minimize such undesired effects, special-
ized liposomes were produced through addition of vari-
ous functional groups. PEGylation and crosslinking within
the bilayer of the liposomes was successfully utilized to
improve stability and decrease side effects.®> PEGylation,
in general, improved bioavailability and biocompatibility
as well. For example, to obtain improved pharmacokinet-
ics, PEGylated cationic liposomes called “solid nucleic
acid lipid particles” (SNALPs) were created, and they were
successfully used for siRNA delivery. In fact in SNALPs,
PEG coating neutralized net charge and increased the
blood circulation time of the liposomes significantly.5%"2
Moreover, fusogenic lipids added to liposome formula-
tions improved cellular uptake and endosomal escape.’®
Most importantly, SNALPs were relatively well toler-
ated in vivo even in non-human primates.’>* The list of
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modified/improved liposomes performing well in in vivo
studies also includes cationic solid-lipid nanoparticles and
cardiolipin-based liposomes.*>’3"7> Currently, improved
liposomes are one of the most promising tools for gene
delivery and patented formulations produced by sev-
eral companies were successful enough to reach clinical
trials.’!

Lipidoids

Lipidoids are cationic lipids that are created by the conju-
gation of primary or secondary amines to alkyl-acrylates
or alkyl-acrylamides.”® They were introduced as novel
alternatives to liposome formulations used in gene deliv-
ery. Changes in the composition lipidoids were shown to
improve their therapeutic properties. For example, changes
in the alkyl chain length of the PEG lipid was reported
to affect PEG deshielding rate and dose kinetics of lipi-
doids in the blood.”® Moreover, cholesterol incorporation
was shown to improve carrier stability. Small sized lipi-
doids (50-60 nm) were successfully used for the delivery
of siRNA into liver cells avoiding engulfment by Kuppfer
cells.”® Lipidoids may also be used for coating inorganic
nanoparticles in order to introduce cationic charges.”” Lipi-
doids have lower toxicity and increased efficacy, therefore
they present an alternative to classical liposomes for gene
delivery studies.

Minicells

Minicells are bacteria-derived, non-living, anucleated
nano-sized vesicles that were used as nano drug carriers.”®
Inactivation of min genes that control normal division in
bacteria such as Salmonella typhimurium result in the for-
mation of minicells. min gene products ensure that cell
division septum is correctly located to the midpoint of
the cell. In case of min gene product mutations, septa-
tion defects result in the formation of minicells devoid of
the chromosomal DNA. Therapeutic RNAs may be loaded
into minicells by the introduction of shRNA of interest
into min mutant bacteria, and eventually shRNAs segregate
into minicells.” Purified minicells prepared by this method
are pre-packaged with effective copy numbers of the plas-
mid. For targeting purposes, tumor-specific antibodies may
be decorated onto minicells, by the exploitation of bac-
terial cell surface components such as O-polysaccharide
of LPS. Minicell-RNAi combinations proved to be effec-
tive in experimental cancer treatment.” Other cell derived-
vesicles that were tested as nanocarriers include bacterial
ghosts, bacterial outer membranes or mammalian cell-
derived exosomes.3%%2

Polyplexes

Materials that self-assemble with nucleic acids into
nanocomplexes are called “polyplexes.” These complexes
generally form though the electrostatic interaction of the
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cationic units of the polymers with the anionic phos-
phate groups of the nucleic acids. Natural and biocompat-
ible (e.g., chitosan, Atelocollagen, cyclodextrin) or more
frequently synthetic (e.g., Polyethylenimine, PEI; poly-
L-lysine, PLL; poly-dl-lactide-co-glycolide, PLGA) poly-
mers are used for polyplex formation.33-% Flexibility of the
synthetic polymers in terms of chemical nature, molecular
weight and architecture (linear , branched, grafted, blocky)
provide opportunity to balance their toxicity, improve
nucleic acid binding, protection and release efficiencies.
Moreover, surface modifications may be introduced for tar-
geting purposes and improved pharmacodynamics. Poly-
mers such as PLGA also benefit from a biodegradable
nature which allows clearance of the nanocarriers in time.

PEI

PEI is the most widely and most successfully used polyca-
tion for polyplexe formation. It can be synthesized in lin-
ear or branched forms, and in variable molecular weights
(from 1 kDa to > 1,000 kDa). Higher molecular weight
polymers (70 kDa and above) are very effective in nucleic
acid binding but they are significantly toxic. Low molec-
ular weight forms (2 kDa or less) are less toxic but they
are less effective as transfection agents.®” Therefore, PEIs
at and below 25 kDa with a branched or linear architec-
ture are commonly used as gene delivery reagents.®¥°! The
golden standard gene delivery polymer is branched PEI
of 25 kDa, which offers a balance between the toxicity,
nucleic acid binding/protection and release. Abundance of
positive charges due to protonation under physiological
conditions allows PEI to spontaneously form complexes
with negatively charged small RNAs and DNAs, and pro-
tect nucleic acid molecules from nuclease attacks.3* More-
over, buried inside the polymer, some off-target effects of
the small RNAs were shown to be prevented.”?

The net positive charge of PEI-RNAi complexes also
allow interactions with the negatively charged polysaccha-
rides found on the cell surface.”® These interactions are
believed to be an important factor for the endocytosis of
the complexes by target cells. A key event for the success
of gene delivery is the escape of the nucleic acids from
the endosomal pathway in order to avoid accumulation and
degradation in the lysosomes of the cell.”* The escape is
thought to be the result of the ‘proton sponge’ effect where
the influx of protons and water lead to endosome swelling,
rupture and release of contents, including nucleic acids to
the cytosol.

PEI-induced toxicity was proposed to be a result of
mitochondrial apoptosis induction by the polymer.®*%
Moreover, PEI itself was shown to cause changes in gene
expression in vivo, which might influence biological out-
comes of treatment protocols.”” PEGylation of the PEI
reduces both cytotoxicity of PEI-polyplexes and increase
blood circulation half-life. However, a critical balance
need to be achieved since PEGylation decreases the sur-
face charge, it impacts the binding capacity and cell
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internalization of the polyplexes. Alternatively, short PEI
chains attached together with hydrolysable links such as
disulfide and ester, may provide initially a high molecu-
lar weight PEI system for good nucleic acid condensation
and protection, but upon dissolution because of intracel-
lular redox conditions, they may act as a low molecular
weight PEI polymers with lower toxicity.®” Additionally,
pluronics, that are block copolymers of ethylene glycol-
propylene glycol-ethylene glycol, can be used instead of
PEG. Similar to PEG, pluronics were shown to improve
the biocompatibility and bioavailability of the nanocarri-
ers, but they interact better with the cell membrane due to
the propylene glycol units and enhance cellular uptake of
the particles.®’

PLGA

PLGA is a biodegradable copolymer of glycolic acid and
lactic acid.”® It is widely used in biomedical research as
an FDA-approved substance. PLGA offers several advan-
tages. The polymer is highly stable, biodegradable and
allows sustained release. During nucleic acid delivery,
PLGA is easily taken up by cells through endocytosis,
and no serious toxicity problems were observed.”” PLGA
binds nucleic acids weakly but it might encapsulate them
for drug delivery purposes. Indeed, PLGA nanoparticles
were used in several studies for delivery of drugs to
tumors through the EPR effects.”® Yet following endocyto-
sis, PLGA particles do not effectively realease cargo from
endosomes.**°7 To overcome nucleic acid binding, deliv-
ery and endosomal release problems, the surface of PLGA
can be decorated with various cationic nanoparticles such
as DOTAP, PEI, or polyamine, and may be conjugated to
peptides and antibodies.”

Dendrimers

Dendrimers are tree-like, highly branched, generally sym-
metrical and three-dimensional macromolecules. They
have uniform size and molecular weight which increases
with each new branch (generation). Dendrimers possess a
highly functional outer surface, allowing chemical modi-
fications and interactions. Therefore, they may be used as
flexible and modifiable gene delivery agents.'”’ Besides,
the ability of dendrimers to encapsulate cargos add to their
potential as drug carriers.'”! Dendrimers, including poly-
amidoamine dendrimers (PAMAM), poly-propylene imine
(PPI) dendrimers, poly-L-lysine dendrimers, triazine den-
drimers, carbosilane dendrimers, poly-glycerol-based den-
drimers, nanocarbon-based dendrimers, and others, were
tested as RNAi delivery agents, PAMAM and PPI den-
drimers being the most commonly studied ones. It was
shown that introduction of surface-modifications mini-
mized toxicity-related problems, increased RNAi-binding
and cellular uptake efficacies of the dendrimers.!?? 103
Of note, in vivo gene expression changes were also
observed with drug-free dendrimers.'®* Therefore well
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controlled experiments are needed before drawing conclu-
sions during RNA interference studies.

Atelocollagen

Atelocollagen is an organic protein-based molecule
derived from type I collagen of calf dermis. Since
it is obtained following a pepsin treatment, atelocolla-
gen is devoid of telopeptides that are responsible for
the immunogenicity of collagen.!® Moreover, atelocol-
lagen has low toxicity, it was shown to stabilize RNA
molecules. Increased cellular uptake and sustained deliv-
ery was observed in in vivo, making atelocollagen an ideal
agent for gene delivery.'” Indeed, several studies used ate-
locollagen with success for the systemic or local delivery
of RNAi in tumor models.'"-1%

Chitosan

Chitosan is obtained through alkaline deacetylation of the
polysaccharide chitin that forms the exoskeleton of crus-
taceans, some anthropods and insects. Chitosan that is used
in biomedical research, is a copolymer of N-acetyl-D-
glucosamine and D-glucosamine having a positive charge.
In addition to being biodegradable and biocompatible, chi-
tosan has a low production cost. Mucoadhesive properties
of chitosan allow the penetration of the substance into
epithelial cell layers, including the gastrointestinal barri-
ers. Nucleic acid encapsulation and sustained release was
proved to be possible using chitosan.!'!%!!? Moreover, chi-
tosan prolongs transient time in bowel, improving par-
enteral drug bioavailability.''® Nanoparticles of chitosan
are taken up into cells through endocytosis to a cer-
tain extent. To improve gene delivery efficacies, PEG or
deoxycholic acid conjugates, or modifications, including
trimethylation, thiolation, galactosylation may be intro-
duced to chitosan.!"' Moreover, chitosan-based carriers
possess functional groups that are suitable for conjugation
to ligands relevant for targeted tumor delivery. Although
inefficient endosomal escape is a problem encountered
with chitosan-based carriers, some chemically modified
forms showed improved escape properties.'!*

Cyclodextrins

Cyclodextrins are natural polymers. They are cyclic
oligosaccharides of a glucopyranose generated during the
bacterial digestion of cellulose. Their central cavity is
hydrophobic while the outer surface is a hydrophilic,
and they can create water-soluble molecular complexes.!!
Native cyclodextrins do not form stable complexes
with nucleic acids. But the DNA/RNA complex for-
mation capacities of the molecule can be modulated
and improved through molecular modifications, includ-
ing changes in functional groups, hydrophilic-hydrophobic
balance, charge density, spacer length and conjugation to
other carrier molecules.!'>!'® Cyclodextrins are not only
biocompatible, but they have the capacity to decrease
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cytotoxicity of other molecules and carriers that are conju-
gated to them.''” Moreover, cyclodextrins increase cellular
adsorption and intake of molecules.!'® So, in addition to
their use as a gene delivery agents, cyclodextrins are used
as linking agents or structural modifiers in complex car-
rier molecules. For example, conjugation of cyclodextrin
to PEI resulted in lower toxicity and higher transfection
efficiencies.!"” In addition to the advantages cited above,
a cyclodextrin polycation delivery system was reported
to block immune reactions raised against small RNAs
through a masking effect.'””'?! Importantly, studies in
non-human primates revealed that cyclodextrin-based car-
riers were well tolerated and they do not stimulate signif-
icant antibody responses.'?

Aptamers

Aptamers are nucleic acid-based molecules selected
in vitro according to their capacity to bind target molecules
specifically and with high affinity. The immunogenicity of
aptamers is limited due to chemical modifications, min-
imizing adverse reactions. Moreover, nucleic acid nature
and small size of aptamers result in improved transport and
tissue penetration. Since they can be specifically designed
according to cell or tissue types (e.g., tumor cell com-
ponents), side effects and off-target effects are minimal.
In gene therapy applications, the nucleic acid nature of
aptamers allows easy conjugation to RNA/DNA, combin-
ing targeting advantages with a therapeutic potential.'??
Alternatively, non-covalent adapter linkages might be cre-
ated between aptamers and RNA molecules. Functional
groups might be added to the 5'- or 3'-termini, allowing
covalent or non-covalent conjugation of aptamers to carrier
nanoparticles.'?

Inorganic Particles

Inorganic nanoparticals such as carbon nanotubes, mag-
netic nanoparticles, quantum dots and silica are the focus
of recent efforts in drug and gene delivery. Many of these
particles actually offer the opportunity to combine imag-
ing and therapeutic possibilities in the same particle, ren-
dering the nanocarrier a valuable “theranostic” device.'**
Increased surface/volume ratio of inorganic particles pro-
vides an opportunity for surface modifications, including
conjugations to drugs, oligonucleotides, targeting peptides
or other molecules.!>> 12 Yet, inorganic nanoparticles tend
to aggregate, and the size of the aggregate might have an
impact on its function and biodistribution. Such inorganic
nanoparticles are hence coated with organic molecules
which provide colloid formation in aqueous and physiolog-
ical media and stability. Nature of the organic coatings has
to be designed for specific purposes, but biocompatibility
of the organic molecules themselves and/or their degra-
dation products are critical for drug delivery purposes.'?
Chemistry of the coating might influence the half-life in
blood and biodistribution, as well as the toxicity of inor-
ganic nanoparticles and their clearance mechanisms.
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Depending on the material they consist of, inorganic
nanoparticles may possess a number of different properties
such as high electron density and strong optical absorption
(e.g., metal particles, in particular Au), photoluminescence
or fluorescence (semiconductor quantum dots, e.g., CdSe,
CdTe, CdTeSe/ZnS), phosphorescence (doped oxide mate-
rials, e.g., Y,0;) or magnetic moment (e.g., iron oxide or
cobalt nanoparticles). The shape of the nanoparticle is also
an important factor influencing its interaction with cells.
Many of the above mentioned nanoparticle are spherical
in shape except carbon nanotubes that are tubular.

Carbon Nanotubes

Carbon nanotubes (CNTs) easily cross the plasma mem-
brane and translocate directly into the cytoplasm of tar-
get cells due to their nanoneedle structure and using
an endocytosis-independent mechanism, yet they do not
induce cell death.'”’”'? CNTs are classified as single-
walled CNTs and multiwalled CNTs. Single or multiple
graphine layer(s) might have a length ranging from 50 nm
to 100 mm, and a diameter of 1 nm to 100 nm. Proper
functionalizing of CNTs by covalent or non-covalent
strategies (such as coating with PEG or Tween-20) may
provide solubility in aqueous solutions and prevent non-
specific interactions, thus minimizing toxicity observed
with non-functionalized raw particles.!** 3! Modifications
might also increase biocompatibility and blood circulation
half-life.!¥* 133 CNTs have very strong absorption charac-
teristics, providing an opportunity for photothermal abla-
tion therapy in addition to nanocarrier properties.

Magnetic Nanoparticles

Magnetic nanoparticles are composed of ferromagnetic
elements such as Ni, Co, Mn, Fe. Superparamagnetic
iron oxide nanoparticles (SPIONS), such as maghemite--y-
Fe,0O; and magnetite-Fe;O,, are one of the most widely
used magnetic particles as nanocarriers due to relatively
low cost of production, biocompatability and superpara-
magnetic nature.'>* '35 SPIONS are approved by FDA for
clinical trials. They are commonly used as contrast agents
for magnetic resonance imaging (MRI). SPION crystals
(less than 10 nm in diameter) are coated for specific
purposes with organic molecules such as dextran, amino
dextran, BSA, PEI, dendrimers, lipids and trialkoxysi-
lanes, including aminopropyltriethoxy silane (APTES).
Coating chemistry and preparation methods influence over-
all hydrodynamic size, pharmacokinetics and the contrast
type (dark-T2 or bright-7'1 agent). Ability to track the fate
of nucleic acid carrier magnetic nanoparticles in vivo using
MRI is highly desirable, since it provides information
about the location of the cargo and its biodistribution.!'?
Attachment of ligands provides target specificity, and
PEGylation may improve biocompatibility and blood half-
life. These modifications are commonly introduced to SPI-
ONss that are used for imaging and therapy purposes. Due
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to their magnetic nature, drug or nucleic acid carrying SPI-
ONs can be concentrated at desired diseased sites such as
tumors and they may be dragged magnetically towards the
lesion area.!’® ¥’ Moreover, magnetic nanoparticles offer
the possibility of hyperthermia treatment as a result of
magnetic heating.'*> Under applied alternating magnetic
field, SPIONs cause local temperature increase (41-42 °C)
which may be exploited for alternative and efficient cancer
therapy. Therefore, SPIONs are one of the most versatile
and multifunctional nanoparticles. Consequently, SPIONs
were used as popular gene delivery vehicles.'*

Magnetic nanoparticles may be engineered for oligonu-
cleotide delivery purposes. MRI visible PEI-PEG coated
SPIONs, which are tagged with an antibody, have been
shown to effectively carry siRNA to cancer cell lines and
showed low toxicity."*® SPIONs coated with both thermo
responsive and cationic polymers such as poly[2-(2-
methoxyethoxy)ethylmethacrylate]-b-poly-[2-(dimethyl-
amino)ethyl methacrylate], were reported to have
25-100 times better transfection efficiency than branched
PEI 25 kDa, when coupled with magnetic targeting.'®
SPIONs coated with low molecular weight PEI
(1.2-2 kDa), which is usually not effective as poly-
plexes in transfection, were shown succesful in delivering
siRNA to mouse macrophages (H. Yagci Acar, WIPO
Patent W0O2006055447A3). Therefore, magnetic nanpar-
ticles are under heavy investigation for the development
of multifunctional nanocarriers for cancer therapy and
diagnosis.'®

Quantum Dots

Semiconductor quantum dots (QDs) are light-emitting
nanoparticles of few nanometer in diameter, and they have
been increasingly used as biological imaging and labeling
probes.'* Luminescence/fluorescence properties of QDs
depend on the crystal size and type. Chemical composi-
tion of the crystalline semiconductor core determines the
band gap of the material, therefore the emission wave-
length range. Within possible spectral window, size of
the crystal determines the specific wavelength of lumines-
cence/fluorescence for each and every QD, due to quan-
tum confinement effect. Broad absorption of QDs allow
excitation of multiple QDs at a single wavelength, and
minimal signal mixing due to the narrow emission band.
In addition, they are much more resistant to photobleach-
ing. These two characteristics are the major advantages of
QDs compared to organic fluorophores as imaging probes.
Utilization of QDs in nucleic acid delivery aims both
imaging and therapy, since in vivo localization of cargo
can be observed using optical imaging systems.'*" 4> For
example, cationic CdTe/ZnS QDs conjugated with PEG
was demonstrated to form an effective nanoplex with sur-
vivin siRNA and successfully transfeced human tongue
cancer cells in vitro, and provided real time tracking.'*
However, well-established QDs harbour significant toxic-
ity due to constituents such as Cd, Se, Te.'** Therefore,
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toxicity of these QDs is a drawback for their use in vivo.
As an alternative, silver (Ag) chalcogenites emerged as
safer near-infra red-emitting QDs.!*> 1% Ag,S QDs did not
induce cytotoxicity, ROS production, apoptosis, necrosis
or DNA damage.'*’ For example, Ag,S QDs (coated with
2-mercaptopropionic acid) emitting between 750-850 nm
showed no cytotoxicity in NIH/3T3 cells at even high
doses (600 mg/ml) along with good cellular imaging
potential, 48

Gold Nanoparticles

Gold nanoparticles emerged as popular tools for
nanocarrier-mediated gene therapy.'*’ They are easily syn-
thesized and biocompatible particles that allow addition of
functional molecules on their surface due to high surface-
to-volume ratio.'* 1% A variety of surface changes and
functional additions were reported, including cationic lipid
coating, branched PEI addition or functionalization using
cationic quaternary ammonium or cystamine.!''* 131152
Indeed, cystamine functionalized gold nanoparticles were
shown to effectively bind, deliver and release 35 differ-
ent miRNA in in vitro studies using neuroblastoma and
ovarian cancer cell lines.!>

Silica Nanoparticles

Silica-based nanoparticles are inert, stable, biocompati-
ble and biodegradable particles.'** They can be rendered
hydrophilic, hydrophobic, anionic or cationic using func-
tional surface modifiers, through electrostatic interactions,
or by formation of any other type covalent bonds (e.g.,
ester, amine). Common functionalization strategies to ren-
der the molecule cationic and improve nucleic acid bind-
ing, include grafting of molecules such as PEI, PEI-PEG
and Poly-L-arginine.'>® Nucleic acids may also be loaded
inside the mesoporous silica particles.’® siRNA encapsu-
lating mesoporous silica nanoparticles were successfully
used for in vitro and in vivo gene silencing in several stud-
ies (For example Ref. [156]).

RECENT /N VIVO STUDIES USING RNA
INTERFERENCE IN CANCER THERAPY

There is an exponential increase in the number of scientific
publications dedicated to gene therapy of diseases using
small RNAs and nanoparticles. A literature search using
“nanoparticle” and “siRNA, shRNA or miRNA” revealed
more than 700 articles published in the last two years.
This number is roughly equal to the number of all articles
published in this field until two years ago. So the field is
expanding, and there seems to form a consensus around
the use of nanoparticles as next generation gene therapy
tools. We believe that these high expectations are not only
a consequence of shifting trends in science and technol-
ogy. The exponential rise in interest in the field of small
RNA carrier nanoparticles is fueled by the advances in
the field of nano materials, promising results obtained in
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small RNA therapeutics by both academic laboratories and
industry, and increasing number of successful clinical tri-
als. In this section, we will summarize results of selected
recent studies using RNA therapeutics for cancer treatment
in preclinical in vivo experiments.

Overview of the works dealing with small RNA treat-
ment of experimental cancers and published within the
last two years were summarized in Table I. Although sev-
eral studies were performed using lipid-based nanopar-
ticles (Liposomes, micelles or lipidoids), other particles,
such as polymers, organic or inorganic carriers, and com-
pounds mixtures with functional modifications of vari-
able substances were also tested by many research teams
with reasonable success. Scheme 4 summarizes the general
strategy followed in most of these studies.

Tumor Types and RNAi Therapy
Recent studies in the literature showed that tumors of vari-
ous tissue origins could be treated using RNA interference
strategies (Table I). Fine tuning of nanoparticles through
addition of functional moieties or modifications allowed
delivery of drugs into almost any kind of tumor tissue with
accompanied therapeutic effects. Although several studies
used animal tumor models that resulted from the injection
of cell lines from most commonly seen human cancers
(lung, breast, prostate, cervix or ovarian cancer cell lines),
animals with kidney, urinary bladder, head and neck,
gastric, pancreatic, melanomas, neuroblastomas, glioblas-
tomas, multiple myelomas or sarcomas were also treated
with RNAi/nanocarrier strategy.®!- 16-170 These results give
hope about the general use of RNA interference as a
strategy to treat cancers of different origins. Although
it is difficult to compare the efficacies of different nucleic
acid molecules and their interference effects at this point,
siRNA or microRNAs as well as shRNA vectors were
shown to achieve intratumoral, in vivo target gene knock-
down and anticancer effects, leading to a decrease in tumor
size (For example Refs. [156, 171]). Since in most studies,
in addition to RNAi loaded particles, naked nanoparticles
or particles loaded with non-specific, control nucleic acids
were also used, antitumor effects obtained in these studies
are specific and they may be attributable to small RNA
molecules rather than the particles themselves, underlining
the potential of RNA interference in cancer treatment.
Majority of recent studies with in vivo models chose
to use human tumor cell line xenografts in immune com-
promised mice, nude or severe-combined immuno defi-
cient, SCID mice (Table I) (For example Refs. [162, 172])
Syngeneic transplants and established genetically engi-
neered mouse models of cancer were rarely studied in this
context.'®” 1737175 Therefore, although antitumor effects and
some of the toxic effects (e.g., liver toxicity) might be
revealed using immune compromised mice, hematological,
immunological and inflammatory side effects of the treat-
ment strategies used in recent studies might need to be
revisited using immunocompetent mice.
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Scheme 4. A typical study testing the antitumor potential of nanocarriers and RNA interference.

Combination Treatments

Combination therapies of small RNA molecules and
chemotherapy agents such as paclitaxel, doxorubicin or
gemcitabine were tested to obtain synergistic antitumor
effects.!3%15%:176-180  Geveral studies chose to load the
chemotherapy agent to RNA carrier nanoparticles rather
than systemic chemotherapy administration.

In fact in the literature, small molecule drug deliv-
ery using nanoparticles was studied extensively with the
goal of achieving higher local doses in tumors following
low dose systemic drug administrations. Very promising
experimental results were obtained, and nanocarrier loaded
drugs even entered clinical use.®! Nanoparticles loaded
with chemotherapy agents, including liposomal formula-
tions of doxorubicin, daunorubicin, irinotecan, vincristine,
paclitaxel/docetaxel, lurtotecan and oxaliplatin, and poly-
mers carrying camptothecin and docetaxel reached clinical
trials, and even some of them are already in the market.’!

Combinations of small RNAs and chemotherapy agents
obtained by loading both components into/onto same
nanocarriers may offer several advantages. Experimental
results obtained with these combinations were encour-
aging. For example, combination of paclitaxel with
mTERT siRNA or survivin shRNA in experimental lung
cancers, 17 with survivin and Bcl-2 shRNA in ovarian

J. Biomed. Nanotechnol. 10, 1751-1783, 2014

cancer'®! and Mcl-1 siRNA in cervix ca models'®? resulted

in synergistic antitumor effects. Similar results were
obtained with survivin shRNA combined with doxorubicin
in breast cancer.!”’ Small RNA combinations were used
to counteract multiple drug resistance during chemother-
apy. siRNA targeting major multiple drug resistance
proteins P-glycoprotein drug exporter/MDR1/ABCBI1 or
MRPI/ABCCI in nano combinations with doxorubicin
enhanced antitumor effects of the chemotherapy in exper-
imental breast cancer models.!”- ¥ HIF-1a knockdown
using siRNAs sensitized prostate cancer tumors to dox-
orubicin and MDR1 downregulation was also observed in
this model.!® In an alternative strategy, a drug-activating
enzyme (bacterial cytosine deaminase, bCD) was deliv-
ered together with the siRNA against choline kinase
(Chk).'" In this context, while bCD activated local conver-
sion of nontoxic prodrug S5-fluorocytosine (5-FC) to cyto-
toxic 5-fluorouracil (5-FU) inside prostate tumors, siRNA
Chk targeted choline metabolism offering the possibility
of combined treatment.'”’ Therefore, packaging of small
RNAs together with chemotherapy agents in multifunc-
tional targeted nanoparticles, might further sensitize can-
cer cells to the toxic effects of chemotherapy agents, fight
multi drug resistance and allow the use of local activation
strategies.
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Scheme 5. Schematic representation of proteins targeted by RNA interference in recent cancer studies. Targeted proteins fall
into 6 major groups based on their cellular functions. 1-Cell cycle 2-Apoptosis, 3-Proliferation and transcription, 4-Angiogenesis,

5-Translation, 6-Drug resistance.

RNAi-Targeted Genes
Genes that were frequently targeted by siRNA/shRNAs
or miRNAs in recent studies fall into a few categories
(Scheme 5). In recent studies, cell cycle regulators such
as Polo-like kinase 1 (PLK1), kinesin spindle protein
(KSP/EGS), p21, antiapoptotic proteins Bcl-2, BCL2L12,
MCL-1, survivin, XIAP, or p65/RELA, and proteins-
related to tumor angiogenesis namely VEGF and VEGF
receptors were targeted by several groups to block growth
of tumors of different origins.'6% 165 176. 177, 182. 185187 A qj-
tionally, growth factor receptors, such as epidermal growth
factor receptor (EGFR), were targeted in head and neck
and breast cancers, while epithelial cell receptor protein-
tyrosine kinase (EphA2) downregulation showed antitumor
effects in ovarian tumors.'7? 188

EWS/Fli-1 is an abnormal protein produced by the 11;
22 chromosomal translocation and the fusion of the N-
terminal of part of the EWS protein to the DNA-binding
domain of the Fli-1 protein. Resulting EWS/Fli-1 chimeric
transcription factor was shown to drive the development
of the pediatric bone cancer called Ewing sarcoma.'®® The
work of Ramon et al. showed that siRNA-mediated knock-
down of the EWS/Fli-1 chimeric oncogene using targeted
nanoparticles led to tumor regression in vivo, confirm-
ing the use of this strategy for cancer-specific proteins
produced by chromosomal abnormalities.'® Moreover,

1774

oncogenes, such as MYC, STAT-3, hTERT were targeted
by nanoparticle-coupled small RNAs leading to tumor
treatment.

miRNAs and Antagomirs

A number of microRNAs or antagomirs (anti-miRNA
oligonucleotides) were used as anticancer molecules as
well. The list includes miR-34a, miR-10b, miR-107 and
miR-155.""1% miR-34 expression is lost in a very broad
range of cancer types, pointing out to its key role in
the regulation of tumor suppression.'®'"'® This miRNA
was shown to have various anticancer effects, including
blockage of cell proliferation and metastasis, and induc-
tion of apoptosis.'”’” Recent works showed that miR-34
coupled to nanoparticles could block the growth of pan-
creas, breast and neuroblastoma experimental tumors.'?!1%3
Nano-targeted delivery of the tumor suppressor miR-107
into head and neck cancers also led to the treatment of
experimental tumors.'”® On the other hand, overexpres-
sion of miR-155 in mice led to lymphoma development,
and transplanted tumors of miR-155 overexpressing lym-
phomas responded miR-155 antagomirs (anti-miR-155)
delivered on nanocarriers.!*® Similarily, antagomirs against
miR-10a (anti-miR-10a) delivered in nanoparticles could
prevent lymph node metastasis of xenografted breast
tumors and decreased primary tumor volume.'**

J. Biomed. Nanotechnol. 10, 1751-1783, 2014
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Targeted Delivery Strategies
A number of targeting strategies were used to concen-
trate nanoparticles in and around the tumor mass. A num-
ber of studies relied on the enhanced permeability and
retention (EPR) effect and/or cleavage-mediated release
of PEG components in the tumor area as a result of
low pH environment and metalloproteases.'3" 8% Others
used ultrasonic cavitation or magnetic manipulation as
means of tumoral delivery.!”! Different targeting strategies,
including attachment of antibodies (e.g., anti-GD2 anti-
bodies for targeting neuroblastomas, anti-CD99 antibody
for Ewing’s sarcomas, anti-Human epidermal growth fac-
tor receptor 2 (HER2) antibodies for breast cancers and
anti-CD44 antibodies for gastric cancers and melanomas),
aptamers (prostate-specific membrane antigen (PSMA)
aptamers for prostate cancers), peptides (e.g., RGD or
NGR peptides targeting tumor vasculature), proteins (e.g.,
Hyaluronan to target CD44 receptors on breast tumors) or
molecules such as anisamide (targeting sigma-1 receptors)
or urea-based PSMA-targeting moiety were exploited to
selectively deliver nanoparticles and RNA drugs to tumor
tissues and cells.8!- 157, 183,186, 190

Another problem encountered during nanoparticle-based
therapies is the efficacy with which the particles enter
cells. Here, in addition to relying on single or multilayered
lipids for cell membrane fusion, the delivery of many par-
ticles into cells was achieved by the addition of peptides
or proteins onto the particles, including TAT, CC9, KALA
peptides or hyaluronan, that facilitate endosomal uptake
by target cells.!%: 174183193

A bottleneck in the effectiveness of RNA-based ther-
apeutics is encountered following endocytosis. In fact,
endosomes mature into lysosomes through acidification of
their interior and acquirement of lytic enzymes, including
proteases, nucleases and lipases. Delivery to the tumor tis-
sue and endocytosis per se do not guarantee anticancer
effects, and small RNAs carrier particles might well end
up in lysosomes and degraded before having the chance
to show any therapeutic effect. To circumvent lysis in
lysosomes, several strategies were applied in the reviewed
works. As mentioned in previous sections, an essential
dilemma stems from the use of PEG. While PEGyla-
tion changes surface charges allow addition of functional
molecules and prolong half-life in blood circulation, PEG
prevents endosomal escape. In order to benefit from the
positive effects but still allow the release of the particle
to the cytosol where small RNA action occurs, several
strategies were followed. The strategies included addition
of pH-sensitive and/or cleavable linkers to PEG itself or
to the linkers of the RNA molecules.”" 2% Inclusion
of PEI to the particles was another strategy to destabi-
lize endosomes and release the contents to the cytosol
through its proton sponge effects.!37178:179.201.202 Rinq]ly,
in some studies, authors preferred to add peptides such as
Influenza Inf7 peptide or Arginine-rich polypeptides that
facilitated endosomal escape of the particles.!!172:203.204

J. Biomed. Nanotechnol. 10, 1751-1783, 2014

Indeed, in almost all cases, manipulations favoring the
release of RNA and/or particles from endosomes increased
transfection efficacies and antitumor effects of RNA car-
rier nanoparticles (For example Ref. [161]).

Delivery Methods

Most commonly studied nanoparticle delivery mode
in experimental cancers appears to be intravenous or
intratumoral injections of RNA-nanocarrier complexes.
As expected, intravenous systemic injections were more
effective, if targeting of the nano drugs to tumorous tis-
sues using antibodies, pepetides etc were achieved (For
example Ref. [81]) Strikingly, in a few studies, oral
administration and enema were tested.'”® 2% Ideally, oral
administration would be the most practical administra-
tion method for any drug, be it a small molecule or an
RNA-based drug. Although intravenous or intratumoral
administrations better meet consistency and reproducibil-
ity concerns during animal studies, and they are viable
alternatives for cancer treatment, drug development efforts
need to include per os (oral) and other alternative delivery
methods as well and deal with problems related to gas-
trointestinal environments and absorption.

CONCLUSIONS

Studies cited above and others are the proof that there
is an increasing interest in nanoparticle-based drugs for
cancer treatment. The ideal cancer drug should have sev-
eral properties, including high efficiency, high selectiv-
ity for cancer cells, and minimal side effects in normal
organs and tissues. In addition, drugs should have limited
effects on the life standard of patients during the treat-
ment period and after. Lower metastasis rates and higher
rates of complete remission and cure are expected in the
ideal treatment of cancer. Moreover, some nanoparticles,
such as quantum dots and SPIONs, might offer advan-
tages for more accurate and sensitive diagnosis and in the
follow-up of relapses and metastasis. Nanoparticles might
fit the description of such “magic bullet drugs,” making
close to ideal medical approaches possible. Progress in the
fields of nanotechnology and biomedicine, and experiences
obtained during both preclinical and clinical studies about
the use of nanoparticles as anticancer molecule carriers
will surely pay off in the coming years.

Nanoparticle carried and targeted drugs are studied
extensively. In addition to nanocarrier-delivered conven-
tional chemotherapeutics that are currently in advanced
clinical phases or already in the market, several RNAi-
based drugs entered or are entering clinical trials.3!-206-207
Today, nanoparticles that reached clinical phases are
liposomal or lipid-based RNAi formulations, and they
are mainly tested in patients with solid tumors (Ref-
erences herein [31] and for example clinical trial code
NCTO01505153). Yet, clinical studies for the treatment of
non-solid cancers, including non-Hodgkin’s lymphomas
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and multiple myelomas are ongoing (e.g., clinical trial
codes NCTO01733238 and NCTO01435720). Publications
of the results of a clinical study using lipid nanoparti-
cles carrying siRNAs against VEGF and kinesin spindle
showed that trials using the right strategies and combi-
nations may be well tolerated, less toxic and effective
against advanced stage cancers (here, liver metastases in
endometrial cancer).?”® Additionally, studies with some of
the siRNA carrier non-liposomal particles were reported to
be relatively safe and feasible both in non-human primates
and human.'?0-2%°

Overall, data provided here point out to the fact that
nucleic acid nanocarriers have a great potential as optimal
cancer drugs. Effective carriers that may be synthesized
using feasible chemistry allowing large scale production
and having reasonably long shelf-lives will surely be avail-
able for routine use in clinics in the near future. As a
consequence, global market size of nano-based pharma-
ceuticals is expected to increase exponentially in the com-
ing years.?!°

ABBREVIATIONS

siRNA,
SshRNA,
miRNA,
GI,
cDNA,
RNAI,
AGO,
RISC,
RdRP,
hTERT,
RMRP,
LNA,
FANA,

RES,
NPs,
EPR,
PAMAM,
PEI,
PDMAEMA,
RGD,
PEG,

PC,

PE,
DOPC,

DOPE,

SNALPs,
LPS,
PLGA,
PLL,
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Small interfering RNA

Small hairpin RNA

Micro RNA

Gastrointestinal

Complementary DNA

RNA interference

argonaute

RNA-Induced Silencing Complex
RNA-dependent RNA polymerases
Human telomerase catalytic subunit
RNA processing endoribonuclease
Locked nucleic acids
2'-deoxy-2’-Fluoro-3-d-arabinonucleic
acid

Reticuloendothelial system
Nanoparticles

Enhanced permeability and retention
Poly(amido amine)
Polyethyleneimine
Poly(dimethylaminoethyl methacrylate)
Arginylglycylaspartic acid
Polyethylene glycol
Phosphatidylcholine
Phosphatidylserine
1,2-Oleoyl-sn-Glycero-3-phosphatidyl-
choline
1,2-Dioleoyl-sn-Glycero-3-phosphatidyl-
ethanolamine

Solid nucleic acid lipid particles
Lipopolysaccharides
Poly-dl-lactide-co-glycolide
Poly-L-lysine

DOTAP,

PPI,
CNTs,
SPIONS,

APTES,
QDs,
SCID,
mTERT,
MDRI,
Chk,
bCD,
5-FC,
5-FU,
PLK1,
KSP,
XIAP,
VEGF,
VEGFR,

EGFR,
EphA2,
HER?2,
PSMA,
NGR,

N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-
trimethylammonium methyl-sulfate
Poly-propyleneimine
Carbon nanotubes
Superparamagnetic
nanoparticles
Aminopropyltriethoxy silane
Quantum Dots

Severe-combined immuno deficient
Mouse telomerase catalytic subunit
Multidrug resistance protein 1
Choline kinase

Bacterial cytosine deaminase
5-fluorocytosine

5-fluorouracil

Polo like kinase 1

Kinesin spindle protein

X-linked inhibitor of apoptosis protein
Vascular endothelial growth factor
Vascular  endothelial  growth
receptor

Epithelial growth factor receptor
Tyrosine kinase stimulates

Human epidermal growth factor receptor 2
Prostate-specific membrane antigen
Asn-Gly-Arg peptide.

iron oxide

factor
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